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Problem Statement
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• Physics-based probabilistic fatigue damage 
prognosis methodology

- Existing models are not suitable for concurrent prognosis and diagnosis analysis

• Comprehensive uncertainty management 
framework for prognostic algorithms
- A comprehensive uncertainty quantification, propagation and updating scheme is 

lacking for prognostic algorithms 

• Rigorous model verification and validation 
methodology and its associated metrics
- No available prognosis metrics for time-dependent RUL prediction 

• Experimental testing to demonstrate, validate, 
and compare fatigue damage prognostic 
algorithms
- Multi-level experimental study for hypotheses verification, prediction validation, 
and application demonstration
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Background
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Validation and uncertainty management

of prognostic algorithms

Probabilistic Fatigue Prognosis

Model Validation

Experimental testing

Uncertainty Management

• Small and long crack growth

• Multi-axial fatigue modeling

• Life prediction methodology

• Analytical and simulation methods

• Random process theory

• Bayesian updating

• Usage monitoring and sensors

• Non-destructive inspection

• Design of Experiments

• Uniaxial fatigue testing

• Multiaxial fatigue testing

• Hybrid simulation/experimental testing

• Model error quantification

• Calibration under uncertainty

• Surrogate modeling

• Validation metrics and criteria

Fatigue crack growth modeling

Uncertainty quantification and propagation

Bayes network

Design of Experiments

Stochastic crack growth rate 

curve

Crack growth 

measurements

Hybrid 

simulation/experimental 

testing

Data analysis

In-situ fatigue testing

Crack growth pattern and 

imaging analysis

First-order reliability method

Life prediction methodology

Adaptive importance 

sampling

Multi-axial fatigue analysis

Validation metrics and criteria

Surrogate modeling
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IVHM milestones being worked 

• IVHM 3.3.2

- Guidelines for fidelity of prognostic estimates, “…describes the appropriate 
level of fidelity for physics-based models for prognostics on subsystems and 
components.”

• IVHM 3.3.3

- Methodology for assessing the performance of prognostic algorithms and 
methods, “…describes a rigorous statistical methodology for assessing the 
quality of prognostic algorithms.”

• IVHM 3.3.5

- Assessment of the ability to perform prognostic reasoning for at least four 
of the adverse events listed in Table 2 (as specified in the RTIP) with 

performance improvements …

• IVHM 1.2.3.7

- "Validated methodologies for prognostics uncertainty management and 
representation… shrink the uncertainty bounds of prediction of damage 
progression by 50% as measured from the initial prediction to the end of 
life". 

5

This is a three year award and currently starting year 2.



2009 Aviation Safety Program Technical Conference

Fatigue life (N)
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Model development

Hypotheses 1: crack growth is controlled by the interaction of forward and reversed 

plastic zone, which are influenced by crack closure

Hypotheses 2: crack growth in not uniformly distributed within one cycle and 

remains constant during majority of the loading history
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In-situ fatigue testing under optical microscope and in SEM

Nikon metallurgical 
microscope

Controller and PC

Jeol 7400-F SEM

In-situ optical microscope 
fatigue testing

In-situ SEM

fatigue testing
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Forward and reversed plastic zone measurement

• In-situ optical microscope testing is used to measure the plastic zone size 
within one loading cycle
• Image correlation technique is used to estimate the crack tip strain field
• Crack closure hypothesis is verified for Al-7075-T6
• Ongoing work to include the crack blunting mechanism
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High resolution crack tip deformation and growth observation

20lb 60lb 90lb 110lb 200lb150lb

• Both crack deformation and growth can be observed

• Crack only grows during part of the loading path and not 
in the unloading path

• Ongoing work focuses on the imaging analysis 
(registration and mapping) and additional testing under 
different crack growth rates

1 μm Loading direction
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• Coupled hierarchical state-space model

12

State-space model for concurrent structural-material fatigue 
prognosis
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Structural damage prognosis integrating health and usage 
monitoring systems

Usage monitoring
system

Health monitoring
system

Fatigue damage
prognosis

Risk assessment
Decision making
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Framework of the proposed uncertainty management 
methodology
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• A sound uncertainty management methodology

Uncertainty Quantification (UQ) 

Uncertainty Propagation (UP)

Uncertainty Updating (UU)

Risk Assessment (RA)
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Uncertainty quantification

• Physical variability

• Loading (multi-axial variable amplitude)

• Material Properties

• Data uncertainty

• Sparseness of data available to quantify material property statistics

• Measurement uncertainty (final crack size)

• Model uncertainty/errors

• Finite element discretization error (Richardson extrapolation)

• Gaussian process surrogate model prediction

• Coefficients of selected crack growth model

• Model form error terms

• Uncertainty in inspection

• Crack detected Use crack size and measurement error in inference

• No crack detected use POD (Probability of detection) in inference
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Advanced surrogate modeling for uncertainty propagation
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Basic idea: model the output Y as a Gaussian process which is indexed 

by the inputs x.

Given m training points x1,…,xm, with corresponding outputs 

Y=[Y(x1),…,Y(xm)]T, the joint distribution of Y is defined by

fT – q basis functions for the trend -- linear or quadratic

 – coefficients of the regression trend

 – process variance,  = 2

R – m by m matrix of correlations among the training points

Training:
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Suppose the following information is known:

limit state function (Eq. (a))

target reliability/confidence level (Eq. (b))

Inverse FORM (IFORM) is to find a solution of y to satisfy

the above constraints

vector x : random variables (e.g., material properties, load, structural geometries, etc.)

vector y : index variables (e.g., time, coordinates, variables with small randomness, etc.)

Remaining life prediction under uncertainty
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Efficient probabilistic fatigue life prediction using IFORM

• Limit state function

• Iterative calculation using Newton-Raphson method
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- No sampling required and suitable for both ground-based and on-line 
prognosis

- Directly calculate the RUL at a given confidence/reliability level
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An example for probabilistic life prediction – Al 7075
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- Proposed IFORM method capture the trend and the scatter in the 
experimental data
- Give similar prediction accuracy compared to that of the direct Monte 
Carlo method
- IFORM is very efficient compared to the direct Monte Carlo method

Liu, Y., Mahadevan, S., "Probabilistic fatigue life prediction using an equivalent initial flaw size distribution", 
International Journal of Fatigue, Vol. 31, Issue 3, pp. 476-487, 2009.
Xiang, Y., Lu, Z., Liu, Y., "Crack growth-based fatigue life prediction using an equivalent initial flaw model. Part I: 
Uniaxial loading", International Journal of Fatigue, 2009. (in press)  
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Maximum Relative Entropy approach for uncertainty 
updating

 Uncertainty updating is a critical component for the overall uncertainty 
management

- Update our belief using observations of the system response and reduce 
prognosis scatter band

 Classical Bayesian method is widely used

 Difficult to handle moment data [1], e.g. 

 Maximum Relative Entropy (MRE) approach seeks the posterior under the 
moment constraints

maximize

under constraints

 Posterior from MRE approach is a generalized Bayesian solution

20
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[1] A. Giffin and A. Caticha (2007). Updating probabilities with data and moments. In K. Knuth (Ed.), Bayesian Inference and Maximum Entropy 
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Rigorous model verification and validation using 
prognosis metrics

 Visual graphical comparison is useful but does not provide quantitative 
judgment of the investigated prognostic algorithms 

 Classical metrics

 Based on statistical analysis,  a large number of samples are required

 Difficult to describe the prognosis performance over time

 Prognostics-based metrics [1]

 Designed to describe how well an algorithm improve over time

 Not based on statistics, no sample required

 4 metrics: Prognostic Horizon (PH), α-λ accuracy, Relative Accuracy (RA), Convergence

 Demonstration using experimental testing data [2-3]

 Experimental data: Al 2024-T3 in Virkler’s and McMaster’s dataset 

 Physics model: fatigue crack growth analysis

 Probabilistic prognosis: MRE and Bayesian

21

[1] A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel (2009). Evaluating algorithm performance metrics tailored for 

prognostics. IEEE Aerospace conference, 7-14 March 2009, pp. 1-13.

[2] Guan, X., Jha, R., Liu, Y., “Probabilistic fatigue damage prognosis using maximum entropy approach”, Journal of Intelligent 

Manufacturing, 2009. (accepted)

[3] Guan, X., Liu, Y., Saxena, A., Celaya, J., Goebel, K., "Entropy-based probabilistic fatigue damage prognosis and algorithmic 

performance comparison", annual conference of the prognostics and health management society, San Diego, CA, 2009. 
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Prognosis metrics – Virkler’s dataset

22
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RUL median (Bayesian)
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Center point (Bayesian)

Center point (MRE)

Convergence
Metric MRE Bayesian

MAPE 8.66 10.93

Average Bias (cycles) 10956.27 14051.92

STD(cycles) 7628.77 9115.78

MSE(cycle2) 178.23 x 106 280.5 x 106

PHα=10% 183283 169451

RA λ=0.4 0.92 0.89

CRA λ=0.4 0.89 0.87

Convergence (RA) 74365.72 77349.24
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Prognosis confidence bounds estimation 
(Virkler’s dataset)

 Both MRE and Bayesian can narrow down the confidence bounds using 
additional observations

 Similar conclusions can be seen from the McMaster’s data

 Differences between MRE and Bayesian are case dependent, especially on 
the choice of prior distribution during the updating process

 Additional theoretical and experimental work are ongoing for new validation 
and new metrics development
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Conclusions

24

 A general physics-based probabilistic fatigue damage prognosis 
methodology has been developed

 Novel small time scale fatigue formulation for concurrent multiscale fatigue 
damage modeling

 Comprehensive uncertainty quantification framework including various 
modeling and measurement errors

 Advanced surrogate modeling based on Gaussian Process (GP)

 Efficient probabilistic life prediction method for both ground-based and on-
line prognosis

 Maximum Relative Entropy (MRE)/Bayesian updating to shrink the 
confidence bounds in the life prediction

 Rigorous prognostics-based metrics for quantitative algorithm performance 
evaluation

 Advanced in-situ optical and SEM testing for hypotheses validation
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Next Steps

25

 Extend the developed fatigue modeling to general multiaxial random loading

 Develop a general computational methodology for the structural level 
fatigue prognosis based on the developed material model

 Develop new validation metrics for probabilistic prognostic algorithm 
comparison

 Global sensitivity analysis to investigate the effect of different uncertainty 
sources on prognosis

 Develop a general methodology to handle the uncertainty from unknown 
future loading and investigate its impact on the health management

 Extend the Bayesian framework for loading updating based on usage 
monitoring system

 Continue the experimental testing to supply validation data and support the 
model development


